Generalized composition operators from Bloch type spaces toQKtype spaces
نویسندگان
چکیده
منابع مشابه
Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeneralized composition operators from logarithmic Bloch type spaces to Q_K type spaces
In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.
متن کاملgeneralized composition operators from logarithmic bloch type spaces to q_k type spaces
in this paper boundedness and compactness of generalized composition oper-ators from logarithmic bloch type spaces to q_k type spaces are investigated.
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملComposition Operators from Nevanlinna Type Spaces to Bloch Type Spaces
Let X and Y be complete metric spaces of analytic functions over the unit disk in the complex plane. A linear operator T : X → Y is a bounded operator with respect to metric balls if T takes every metric ball in X into a metric ball in Y . We also say that T is metrically compact if it takes every metric ball in X into a relatively compact subset in Y . In this paper we will consider these prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces and Applications
سال: 2010
ISSN: 0972-6802
DOI: 10.1155/2010/296570